Seminarsonly.com

Custom Search

>>

Are you interested in this topic. Then mail to us immediately to get the full report.

E-mail :- contactv2@gmail.com

______________________________

 


 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Valve Timing In I.C. Engines : Seminar Report and PPT

In this page, you can find Variable Valve Timing In I.C. Engines ppt, Variable Valve Timing In I.C. Engines pdf, Variable Valve Timing In I.C. Engines system, Variable Valve Timing In I.C. Engines seminar report  

INTRODUCTION

VALVE TIMING (VT) is one of the most important aspects of consideration in the design of an automobile engine. Simply defined, it is the timing, or regulation of the opening and closing of the valves. In simpler terms, it is the way an engine 'breathes'.

In an I.C.engine, usually the inlet valves open a few degrees (of crank angle) prior to TDC, and close after BDC. Similarly, the exhaust valves open a few degrees before BDC and close a few degrees after TDC. This is done to maximise:
" Intake of air/air-fuel mixture; and
" Scavenging, i.e. the exhaust of burnt gases.

Until recently, most engines around the world utilised ordinary or static VT, where the parameters of valve opening, lift, and closing (VO, VL and VC) were fixed. This was satisfactory at normal engine speeds, but posed problems at high and low speeds. Since the VT did not vary with speed, the additional requirements that arose at the extreme speeds could not be met with static VT. For example, at high speeds, the engine requires greater amounts of air. This implies that the IV should remain open for a longer period of time. This, though beneficial at high speeds, would be a menace at low speeds as it may lead to exhaust of unburnt fuel, which results in fuel wastage, increased emissions and lower performance.

This is where variable valve timing (VVT) comes into play. As the name suggests, the timing of the valves is not fixed, but varies, as per the demands of the situations. Therefore, the extra demands of the engine can be met, which in turn, results in improved engine performance.

1.1 Valve Timing
Valve timing is the regulation of the points in the combustion cycle, at which the valves are set to open and close. Since the valves require a finite period of time in which to open or close without abruptness, a slight lead-time is always necessary for proper operation. The design of the valve-operating cam provides for the smooth transition from one position to the other, while the cam setting determines the timing of the valve.
In a typical four-stroke engine, the inlet valve is set to open before TDC (top dead centre), towards the end of the exhaust stroke and close after BDC (bottom dead centre), at the start of the compression stroke.

1.2 Inlet Valve Timing
While the intake valve should open, theoretically at TDC, most engines utilise an intake valve opening, which is timed to occur a few degrees prior to the arrival of the piston at TDC on the exhaust stroke. This is because by the time the valve becomes fully open, the piston would have travelled considerably down the bore, and since the valve would have to be fully closed before BDC, the actual time the valve would be fully open would be minimal.
Additionally, the inertia of the incoming mixture plays a big role. Keeping the inlet valve open after BDC forces more mixture to pack into the cylinder, in spite of the fact that the piston is moving upwards.

1.3 Exhaust Valve Timing
The exhaust valve is set to open before BDC, towards the end of the power stroke and close after TDC, at the beginning of the intake stroke. The reason the exhaust valve is opened before BDC is to prevent the exhaust gases from forming a high-pressure cushion, which would impede the movement of the piston and rob the engine of power. This also ensures that the valve is fully open at the start of the exhaust stroke. Keeping the exhaust valve open after TDC ensures that the entire burnt mixture is thoroughly scavenged.

1.4 Valve Overlap
Valve overlap refers to the time when both the intake and exhaust valves are open. It ensures that the exhaust gases rushing out of the cylinder create suction, in order to draw in fresh mixture, and the fresh mixture entering the cylinder pushes out the burnt fuel mixture.
Therefore, valve timing of any engine depends on:
" The amount of valve overlap
" Lag and lead, i.e. the degrees that the crankshaft turns between valve opening and TDC or BDC
" The intended usage of the engine.


<<back


copyright © 2006 V2 Computers E-mail :- contactv2@gmail.com